改进 rare-earth-Mg-Ni-based 氢存储合金的电气化学的性质,阶段结构和合金的热力学的性质上的 stoichiometry 和 Cu 替换的效果被学习。 Nonsubstituted Ml <潜水艇class=“ a-plus-plus ”> 0.80 Mg <潜水艇class=“ a-plus-plus ”> 0.20 (Ni 2.90 公司<潜水艇class=“ a-plus-plus ”> 0.50 -Mn 0.30 艾尔<潜水艇class=“ a-plus-plus ”> 0.30 ) x ( x = 0.68 , 0.70 , 0.72 , 0.74 , 0.76 )合金和 代替Cu 的 Ml <潜水艇class=“ a-plus-plus > 0.80 Mg <潜水艇class= a-plus-plus > 0.20 (Ni 2.90 公司<潜水艇class= a-plus-plus > 0.50y Cu <潜水艇class=“ a-plus-pl 阶段结构分析证明 nonsubstituted 合金由 LaNi 组成<潜水艇class=“ a-plus-plus ”> 5 阶段, LaNi <潜水艇class=“ a-plus-plus ”> 3 阶段,并且次要的 La <潜水艇class=“ a-plus-plus ”> 2 Ni <潜水艇class=“ a-plus-plus ”> 7 阶段;另外在 Cu 替换的情况中, Nd < 潜水艇 class= “ a-plus-plus ” > 2 Ni < 潜水艇 class= “ a-plus-plus ” > 7 阶段出现并且 LaNi < 潜水艇 class= “ a-plus-plus ” > 3 阶段消失。热力学的测试证明在 dehydriding 的热含量变化处理减少,显示那氢化物稳定性与增加 stoichiometry 和增加的 Cu 内容减少。合金电极的最大的分泌物能力,运动性质,和骑车的稳定性都与增加 stoichiometry 或增加的 Cu 内容增加然后减少。而且,为公司的 Cu 替换改善合金电极的分泌物能力,动力学,和骑车的稳定性。
To improve the electrochemical properties of rare-earth-Mg-Ni-based hydrogen storage alloys, the effects of stoichiometry and Cu-substitution on the phase structure and thermodynamic properties of the alloys were studied. Nonsubstituted Ml0.80Mg0.20(Ni2.90Co0.50-Mn0.30Al0.30)x (x=0.68, 0.70, 0.72, 0.74, 0.76) alloys and Cu-substituted Ml0.80Mg0.20(Ni2.90Co0.50-yCuyMn0.30Al0.30)0.70 (y=0, 0.10, 0.30, 0.50) alloys were prepared by induction melting. Phase structure analysis shows that the nonsubstituted alloys consist of a LaNi5 phase, a LaNi3 phase, and a minor La2Ni7 phase;in addition, in the case of Cu-substitution, the Nd2Ni7 phase appears and the LaNi3 phase vanishes. Ther-modynamic tests show that the enthalpy change in the dehydriding process decreases, indicating that hydride stability decreases with in-creasing stoichiometry and increasing Cu content. The maximum discharge capacity, kinetic properties, and cycling stability of the alloy electrodes all increase and then decrease with increasing stoichiometry or increasing Cu content. Furthermore, Cu substitution for Co ame-liorates the discharge capacity, kinetics, and cycling stability of the alloy electrodes.