变分原理证明了一类含距离位势的拟线性椭圆方程齐次Dirichlet边界条件下第一特征值问题的可解性.进一步,利用临界点理论得到了一类含距离位势的非线性椭圆方程非平凡解的存在性.
Using the Ekeland variational principle, we prove the solvability of the first eigenvalue problem for a class of quasilinear elliptic equations including distance potential with homogeneous Dirichlet boundary condition. Furthermore, using critical point theory, we obtain the existence of a nontrivial solution to a class of quasilinear elliptic equations with distance potential.