为了对从图像中所提取的高维特征进行高效索引,考虑到图像原始高维特征所具有的内在结构化特性,结构化稀疏谱哈希索引算法是在传统谱哈希索引算法中引入结构化稀疏主成分分析,来求取图像高维特征内嵌子空间,进而实现图像索引.该算法中保持了原始图像数据特征之间的结构性信息,并使得视觉特征相似图像之间的汉明距离保持最小.实验结果表明,该算法优于位置敏感哈希、受限玻尔兹曼机、谱哈希以及稀疏谱哈希等索引算法.
Constructing effective indexes for images with high-dimensional features is essential for the efficient retrieval of large scale of images. Motivated by the structure properties of the image features, structured sparse principal component analysis is introduced into traditional spectral hashing to boost image retrieval, which is called structured sparse spectral hashing (S3 H). Sail is not only similarity preserving but also structure preserving. Experimental results demonstrate that Sail outperforms other algorithms.