采用以5kWCO2激光器为光源的激光立体成形(LSF)系统制备了两种成分的Ti2AlNb基合金,借助金相显微镜(OM)、扫描电子显微镜(SEM)、能谱分析(EDS)、X射线衍射(XRD)方法及显微硬度测试,对合金的组织形貌、相组成以及硬度进行了分析。结果表明,原子数分数为Ti-20%Al-27%Nb(以下简称A1)时,沉积态合金的显微组织和相组成沿沉积方向呈现出B2(固溶体)→B2+O(魏氏组织)→B2(固溶体)的变化特征;原子数分数为Ti-22%Al-27%Nb(以下简称A2)时,沉积态合金由枝晶β(TiNb)和枝晶间的B2+O两相组成。在沿沉积高度增加方向上枝晶一次臂长度变化比较明显,从试样底部的25μm左右变化到试样顶部的80μm左右。A1合金的显微硬度从试样底部至顶部呈现低→高→低的变化趋势;A2合金整体的显微硬度变化不大。
Ti2AlNb-based alloys of two different compositions were deposited using a 5 kW C02 laser. Optical microscope (OM), scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), X-ray diffraction (XRD) and microhardness testing method, were used to investigate the typical microstructure evolution, phase transformation and the corresponding hardness evolution. Experimental results show that for Ti-20% Al-27% Nb (atomic fraction) (A1), the phase transformation occurrs. B2→B2 + O→B2 along the laser deposition direction. While Ti-22 % Al-27 % Nb (A2) is mainly composed of β(TiNb) dendritic and B2 + O in the interdendritic. The primary dendrite trunk spacing changes from 25 μm to 80 μm along the deposition direction. For the two different compositions Ti2AlNb-based alloys, the microhardness variation of A1 alloy along the deposition direction is low→high →low, which agrees well with the corresponding microstructure and phase transformation. The microhardness of A2 alloy distributes uniformly except the local region of the dendritic.