位置:成果数据库 > 期刊 > 期刊详情页
结合马尔可夫高斯模型的双邻域模糊聚类分割算法
  • ISSN号:1003-9775
  • 期刊名称:《计算机辅助设计与图形学学报》
  • 时间:0
  • 分类:TP791[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:辽宁工程技术大学测绘与地理科学学院遥感科学与应用研究院,阜新123000
  • 相关基金:国家自然科学基金(41301479,41271435).
中文摘要:

针对传统模糊C 均值(FCM)算法采用欧几里得测度描述像素与聚类间的非相似性对噪声和异常值敏感的问题, 提出基于马尔可夫-高斯模型、且包含特征场和标号场双邻域的模糊聚类分割算法. 首先根据马尔可夫模型能够结合邻域像素作用的特点在标号场上建立与邻域像素相关联的能量函数, 确保相同邻域系统内的像素属于相同类别的概率较之不在相同邻域系统内的像素更大, 最终实现标号场邻域系统的建立; 而后在特征场上利用Gaussian 模型描述像素与聚类间的非相似性测度, 并结合相邻像素对非相似性的影响构建特征场邻域模型, 即利用中心像素和邻域像素特征与聚类均值矢量的差异代替传统像素特征与均值矢量的差异构建Gaussian 模型; 最后结合标号场和特征场邻域构建包含双邻域的模糊聚类分割模型, 实现高精度模糊聚类分割. 通过与现有多种典型FCM 算法对模拟影像和真实彩色影像的实验以及分割结果的对比分析, 证明了文中算法的有效性.

英文摘要:

Traditional fuzzy C-means (FCM) algorithm is sensitive to noises and outliers since it uses the Euclid-ean distance to describe the dissimilarity between the pixel and its cluster. In this paper, we establish a double neighborhood system on the feature field and label field by the Markov-Gaussian model and propose a fuzzy clustering image segmentation algorithm on this basis. First, the characteristic of Markov model is used to construct an energy function of neighbor pixels on the label field to ensure that pixels in the same neighbor-hood system could have a higher probability to be in the same cluster than pixels do not belongs to the same neighborhood system. Thus the neighborhood system on the label field is defined. Second, the dissimilarities between pixels and their clusters are described by a Gaussian model. Neighborhood system on the feature field is defined by taking the influence of neighbor pixels on the depiction of dissimilarities. In other word, the zero mean Gaussian noise between the observed data and its cluster is replaced by that between both the observed pixel and pixels in its neighborhood system and their clusters. Finally, the neighborhood system of both the la-bel and feature fields are used to model a fuzzy clustering algorithm to realize the high segmentation accuracy. The efficiency of the proposed algorithm is demonstrated through experiments on simulated and real color images and the comparison of the segmentation results with other FCM based algorithms.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机辅助设计与图形学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国计算机学会
  • 主编:鲍虎军
  • 地址:北京2704信箱
  • 邮编:100190
  • 邮箱:jcad@ict.ac.cn
  • 电话:010-62562491
  • 国际标准刊号:ISSN:1003-9775
  • 国内统一刊号:ISSN:11-2925/TP
  • 邮发代号:82-456
  • 获奖情况:
  • 第三届国家期刊奖提名奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:24752