位置:成果数据库 > 期刊 > 期刊详情页
基于图割优化的能量最小化模型图像分割方法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]江西理工大学信息工程学院,江西赣州341000
  • 相关基金:江西省教育厅科技项目(GJJ11465)
中文摘要:

针对主动轮廓模型中利用梯度下降法求解能量函数容易陷入局部极小的不足,设计了一个离散化最小能量函数模型。该模型以Chan-Vese模型为基础,利用图割方法优化能量泛函,实现能量的全局最优解。新模型首先将图像映射为图,将基于像素的能量泛函转换为可用图表示的离散化能量函数,通过计算节点及其邻域关系权值,迭代求解最小化能量并将其作用于形变轮廓曲线,直至达到稳定状态。新模型改进了主动轮廓模型对弱边界图像初始轮廓敏感的问题,提高了分割精度和运行速度。

英文摘要:

Aiming at the drawbacks of active contour models which used gradient descent and result in local minimum easily,this paper proposed a discrete energy minimization model for image segmentation.It designed the new model based on Chan-Vese model and optimized the energy function via graph cut method.It could find a global minimum rather than a local one.To construct the new model,first step was to map the image for a graph,and then changed the level set energy function into a discrete form which should be proved graph-representable.Using the model traversed each node and its neighborhood,it computed the weights of the edges with these nodes,and got the new labels of pixels and updated the initial contour,until the energy remained constant and the contour reached the boundary of object.The major advantages of this model included the existence of global minimum and its insensitivity to initialization.Numerical implementations show that the model improves the accuracy and speeds for image segmentation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049