位置:成果数据库 > 期刊 > 期刊详情页
一种基于显著点和SVM相关反馈的图像检索方法
  • ISSN号:1000-1220
  • 期刊名称:《小型微型计算机系统》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科学技术大学电子科学与技术系,合肥230027
  • 相关基金:基金项目:国家自然科学基金项目(61071173)资助.
中文摘要:

针对传统基于全局特征的图像检索方法存在的不足,提出一种基于显著点特征和SVM(support vector machine)相关反馈相结合的图像检索方法.显著点提取方法是对图像进行小波分解,选择粗分辨率下绝对值较大的小波系数,它们对应原图像中变化较大的区域,然后在细分辨率下跟踪这些小波系数,提取原图像中的能代表这些变化的点,即显著点;然后利用显著点的空间分布信息,提取显著点周围局部区域的特征进行检索,并对检索结果进行SVM相关反馈.实验结果表明,引入反馈的方法可有效地检索更多的相关图像,明显提高了检索的准确性.

英文摘要:

To solve the problem of the traditional image retrieval based on global features, a novel method for image retrieval based on salient points and SVM ( support vector machine ) relevance feedback is presented. Firstly, the images are decomposed using wavelet transform. We choose high wavelet coefficients in absolute value at a coarse resolution, because they correspond to a region with high global variations, then look at wavelet coefficients at finer resolutions to find the relevant points to represent the global variations. Then, the local feature of salient points is extracted for image retrieval, which utilizes the distribution information of salient points. ? Finally, the retrieval results are resorted using SVM relevance feedback. Experimental results show that the feedback method can retrieve more relevant images, improve the retrieval accuracy significantly.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《小型微型计算机系统》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院沈阳计算技术研究所
  • 主编:林浒
  • 地址:沈阳市浑南新区南屏东路16号
  • 邮编:110168
  • 邮箱:xwjxt@sict.ac.cn
  • 电话:024-24696120 024-24696190-8870
  • 国际标准刊号:ISSN:1000-1220
  • 国内统一刊号:ISSN:21-1106/TP
  • 邮发代号:8-108
  • 获奖情况:
  • 中国自然科学核心期刊,中国科学引文数据库来源期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23212