位置:成果数据库 > 期刊 > 期刊详情页
基于K-means聚类的微细通道纳米流体气液两相流流型识别
  • ISSN号:1000-1298
  • 期刊名称:《农业机械学报》
  • 时间:0
  • 分类:O357[理学—流体力学;理学—力学]
  • 作者机构:[1]华南理工大学机械与汽车学院,广州510640, [2]广东科技学院机电工程系,东莞523083, [3]广西大学化学化工学院,南宁530004
  • 相关基金:国家自然科学基金项目(21276090)
中文摘要:

为快速识别流型的类型,提出微细通道纳米流体气液两相流流型K—means聚类识别的方法,该方法采用高速摄像机获取微细通道内气液两相流的流型图像,利用灰度流型图像的直方图获得峰值并且该峰值作为K—means聚类的初始中心点,结合不变矩原理和欧氏距离进行相似度流型图像的识别。由查准率-查全率评估体系和5500幅流型图像识别实验的执行耗时分析结果表明:采用K—means聚类对微细通道纳米流体气液两相流流型进行识别的整体识别率达到97.8%,其中弹状和泡状识别率为100%。该方法为微细通道纳米流体两相流的在线识别流型提供了一种新途径。

英文摘要:

A novel approach for identification of flow pattern of micro-channel nanofluid gas liquid two-phase flow was presented based on K-means for the purpose of improving the accuracy and efficiency of flow patterns identification. The proposed flow pattern identification method acquired the whole flow pattern images of the gas - liquid two-phase flow of micro-channel with high-speed camera firstly. In the second place, peak values which were obtained by histogram of gray scale, flow pattern images were thought of as the original center point of K-means clustering. As for the final step, similarity identification of different flow pattern images was carried out with the principles of invariant moment theory and Euclidean distance. The accuracy and efficiency of the proposed flow pattern identification method were demonstrated with the precision-ratio and recall-ratio assessment system as well as time-consuming analysis results of fifty five hundred pieces of flow pattern images identification experiment. Experimental results showed that the overall identification rate of the new flow pattern identification method based on K-means clustering was 97.8%, while the identification rate of slug flow was up to 100% and that of bubble flow was able to reach 100% as well. The new method provided a novel perspective for the online identification of flow pattern of micro-channel nanofluid two-phase flow.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《农业机械学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业机械学会 中国农业机械化科学研究院
  • 主编:任露泉
  • 地址:北京德胜门外北沙滩一号6号信箱
  • 邮编:100083
  • 邮箱:njxb@caams.org.cn
  • 电话:010-64882610 64867367
  • 国际标准刊号:ISSN:1000-1298
  • 国内统一刊号:ISSN:11-1964/S
  • 邮发代号:2-363
  • 获奖情况:
  • 荣获中国科协优秀期刊二等奖,1997~2000年连续4年获中国科协择优资金,被列入中国期刊方阵,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:42884