设f(x)是Z/(2^e)上的强本原多项式,a,b是Z/(2^e)上由f(x)生成的任意两条本原序列。设a=a0+a1·+ae-1·2^e-1,b=b0+b1·2+…+be-1·2^e-1。分别是a,b的2-adic权位分解,则对形如Xe-1+η(x0,x1,…,xe-2)的任一e元布尔函数,压缩序列ae-1+η(a0,a1,…,ae-2)是局部保熵的,即a=b当且仅当对所有满足a(t)=1的非负整数t,都有a^e-1(t)+η(a0(t),a1(t),…,ae-2(t))=be-1(t)+η(b0(t),b(t),…,be-2(t)),其中a是Z/(2)上由f(x)和a0确定的m-序列。
Let f(x) be a strongly primitive polynomial over Z/(2^e) and a, b be any two primitive sequences generated byf(x) over Z/(2e). Let a=a0+a1·+ae-1·2^e-1,and b=b0+b1·2+…+be-1·2^e-1 be the 2-adic expansion of a and b respectively. Then for any e-variable Boolean function of the form Xe-1+η(x0,x1,…,xe-2) , the compressing sequence a^e-1(t)+η(a0,a1,…,ae-2) is local entropy-preservation, that is, a = b if and only if a-1 (t) + η( a0 (t) , a1 (t) …ae-2 (t)) = be-1 (t) +η( b0 (t) , b1 (t) ,…, be-2 (t) ) for all nonnegative integer t with a (t) = 1, where ot is an m-sequence determined byf(x) and a0 over Z/(2).