一个新 Rogosinski 类型内核函数用部分和 Sn 的内核功能被构造(f;t ) 与三方向的分区联系的一个平行等边六角形领域上的概括 Fourier 系列。我们证明那是操作员 Wn (f;t ) 用新内核,函数一致地收敛到任何连续函数 f (t) C *()( 有时期的所有连续函数的空格) 在上。而且,操作员的集中顺序为光滑的接近的功能被介绍。
A new Rogosinski-type kernel function is constructed using kernel function of partial sums Sn(f; t) of generalized Fourier series on a parallel hexagon domain Ω associating with threedirection partition. We prove that an operator Wn(f; t) with the new kernel function converges uniformly to any continuous function f(t) ∈ Cn(Ω) (the space of all continuous functions with period Ω) on Ω. Moreover, the convergence order of the operator is presented for the smooth approached function.