位置:成果数据库 > 期刊 > 期刊详情页
基于非线性回归方程偏导数分析应用程序性能敏感度的方法
  • ISSN号:1000-1239
  • 期刊名称:计算机研究与发展
  • 时间:0
  • 页码:1658-1662
  • 语言:中文
  • 分类:TP302[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]清华大学计算机科学与技术系,北京100084, [2]英特尔中国研究中心编程系统实验室,北京100080, [3]中国科学院数学与系统科学研究院,北京100190
  • 相关基金:国家自然科学基金项目(60773149 10425105); 国家“八六三”高技术研究发展计划基金项目(2008AA01Z108); 国家“九七三”重点基础研究发展计划基金项目(2007CB310900)致谢 非常感谢英特尔中国研究中心编程系统实验室对本项目的支持.非常感谢英特尔编程系统实验室倪天福博士对论文的指导和建议!
  • 相关项目:基于单片多处理器的指令级多线程研究
中文摘要:

性能敏感度反映了应用程序性能相对于性能影响因素的变化率,对性能敏感度的量化分析可为体系结构设计和程序性能优化提供有意义的参考和指导.提出了一种分析程序性能敏感度的非线性回归模型(PS-NLRM),能够量化不同应用程序的性能敏感度.通过主成分分析消除了影响性能的性能事件之间的相关性,通过曲线拟合引入非线性项,建立了程序性能CPI和性能事件之间的非线性回归方程.模型应用在SPEC CPU2006整型程序之上,通过了t检验和F检验,达到90%以上的拟合度.基于非线性回归方程相对于性能事件的偏导数,得到不同应用程序的性能对性能事件的敏感度.利用性能敏感度对SPEC CPU2006整型程序性能进行预测的平均相对误差约为4.5%,比传统线性回归模型预测误差下降50%.

英文摘要:

Performance sensitivity reflects how sensitive the performance is to the influence factors. Analysis on performance sensitivity of different applications can guide the architects on the architecture design and help programmers on application optimization. In this paper, a performance sensitivity non-linear regression model (PS-NLRM) is set up to quantitatively analyze the performance sensitivity of different applications. In the model, principal components analysis is used to eliminate the linear correlations among influence factors which are quantified with performance events. Non-linear independent variables are introduced by curve fitting in the model. By regression analysis, a non-linear regression model is set up between cycles per instruction (CPI) and performance events. The model is implemented in SPEC CPU2006 integer benchmarks and uses the benchmarks as samples. The model is verified by t test and F test with goodness of fit over 90%. By using the partial derivatives of the non-linear regression equation of the model, performance sensitivity is obtained which is denoted by the quantitative change of CPI with the corresponding changes of the performance events. Based on performance sensitivity, performance of applications can be predicted. The average relative error of predicted performance of SPEC CPU2006 integer benchmarks is about 4.5%, which is half reduced compared with the traditional linear regression models.

同期刊论文项目
期刊论文 9
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349