位置:成果数据库 > 期刊 > 期刊详情页
基于相空间重构理论与递归神经网络相结合的股票短期预测方法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP301.06[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]华南理工大学计算机科学与工程学院,广东广州510640, [2]华南农业大学理学院,广东广州510640
  • 相关基金:国家自然科学基金资助项目(30230350);广东省科技攻关项目(2005-B10101033)
中文摘要:

根据股票指数时间序列复杂的非线性特性,提出以相空间重构理论与递归神经网络相结合的股票短期预测新方法。以相空间重构理论确定最佳延迟时间和最小嵌入维数,以最佳延迟时间为间隔的最小嵌入维数作为递归神经网络的输入维数,并按预测相点步进递归的生成训练数据进行短期预测,提高了预测精度和稳定性。该方法应用于沪市股票综合指数预测,其结果与传统的单纯用BP网络模型预测的结果相比较,精度大大提高,证明了该预测模型和方法在实际时间序列预测领域的有效性和实用性。

英文摘要:

A new approach of short-term stock prediction using PSRT (Phase Space Reconstruction Theory) combined with RNN ( Recurrent Neural Network) was presented according to the complex nonlinear character of stock time series. The optimal delay time and minimal embedding dimension were determined by PSRT and the input dimension of RNN was decided by minimal embedding dimension. The training samples were generated by means of the stepping recursive phase points,which could improve precision and stability of prediction. The new method was applied to shot-term forecasting of Shanghai stock index. Compared to the traditional standard BP neural network, the results showed higher precision. So this research acquires effective progress in the practical prediction of time series.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049