位置:成果数据库 > 期刊 > 期刊详情页
Channel temperature determination of a multifinger AlGaN/GaN high electron mobility transistor using a micro-Raman technique
  • ISSN号:1674-1056
  • 期刊名称:《中国物理B:英文版》
  • 时间:0
  • 分类:TN32[电子电信—物理电子学] TS933[轻工技术与工程]
  • 作者机构:[1]Key Laboratory for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronies, Xidian University, Xi'an ?'10071, China, [2]School of Technical Physics, Xidian University~ Xi'an 710071, China
  • 相关基金:Project supported by the National Basic Research Program of China (Grant No. 2011CBA00600), the National Natural Science Foundation of China (Grant No. 61106106), and the Fundamental Research Funds for the Central Universities, China (Grant No. K50510250006).
中文摘要:

Self-heating in a multifinger AlGaN/GaN high electron mobility transistor (HEMT) is investigated by micro-Raman spectroscopy. The device temperature is probed on the die as a function of applied bias. The operating temperature of the AlGaN/GaN HEMT is estimated from the calibration curve of a passively heated AlGaN/GaN structure. A linear increase of junction temperature is observed when direct current dissipated power is increased. When the power dissipation is 12.75 W at a drain voltage of 15 V, a peak temperature of 69.1°C is observed at the gate edge on the drain side of the central finger. The position of the highest temperature corresponds to the high-field region at the gate edge.

英文摘要:

Self-heating in a multifinger A1GaN/GaN high electron mobility transistor (HEMT) is investigated by micro-Raman spectroscopy, The device temperature is probed on the die as a function of applied bias. The operating temperature of the A1GaN/GaN HEMT is estimated from the calibration curve of a passively heated A1GaN/GaN structure. A linear increase of junction temperature is observed when direct current dissipated power is increased. When the power dissipation is 12.75 W at a drain voltage of 15 V, a peak temperature of 69.1 ℃ is observed at the gate edge on the drain side of the central finger. The position of the highest temperature corresponds to the high-field region at the gate edge.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国物理B:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国物理学会和中国科学院物理研究所
  • 主编:欧阳钟灿
  • 地址:北京 中关村 中国科学院物理研究所内
  • 邮编:100080
  • 邮箱:
  • 电话:010-82649026 82649519
  • 国际标准刊号:ISSN:1674-1056
  • 国内统一刊号:ISSN:11-5639/O4
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:406