混合数据吸收(DA ) 是在最近的水文学和水资源研究看见更多的使用的一个方法。在这研究,一个 DA 方法结合了支持向量机器(SVM ) ,整体 Kalman 过滤器(EnKF ) 技术在不同土壤层被用于土壤潮湿的预言:0-5 厘米, 30 厘米, 50 厘米, 100 厘米, 200 厘米,和 300 厘米。SVM 方法论首先被用来从 Meilin 学习区域训练土壤潮湿和气象学的参数的扎根的大小,在华东,到统计预言建模的构造土壤潮湿。随后的观察和他们的统计被用于预言,与二条途径:SVM 预言者和联合 SVM 做的 SVM-EnKF 模型用 DA 方法与 EnKF 技术当模特儿。确认结果证明建议 SVM-EnKF 模型能在不同的层改进土壤潮湿的预言结果,从表面到根地区。
Hybrid data assimilation (DA) is a method seeing more use in recent hydrology and water resources research. In this study, a DA method coupled with the support vector machines (SVMs) and the ensemble Kalman filter (EnKF) technology was used for the prediction of soil moisture in different soil layers: 0-5 cm, 30 cm, 50 cm, 100 cm, 200 cm, and 300 cm. The SVM methodology was first used to train the ground measurements of soil moisture and meteorological parameters from the Meilin study area, in East China, to construct soil moisture statistical prediction models. Subsequent observations and their statistics were used for predictions, with two approaches: the SVM predictor and the SVM-EnKF model made by coupling the SVM model with the EnKF technique using the DA method. Validation results showed that the proposed SVM-EnKF model can improve the prediction results of soil moisture in different layers, from the surface to the root zone.