利用脉冲激光沉积法(PLD)制备了Ga掺杂的Zn0.9Mg0.1O(ZMO:Ga)宽带隙透明导电薄膜.采用各种分析手段研究了沉积温度和真空退火处理对薄膜结构、表面形貌及光电性能的影响.结果表明,制备的薄膜具有ZnO(002)择优取向;200℃下沉积的薄膜通过3×10^-3Pa的真空400℃退火2h后,其电阻率由8.12×10^-4Ω·cm减小到4.74×10^-4Ω·cm,禁带宽度则由原来的3.83eV增加到3.90eV.退火处理增强了薄膜的择优取向和结晶度、增加了禁带宽度、提高了载流子浓度并使其透射谱线的光学吸收边发生蓝移现象.
Wide band gap and highly transparent conductive Ga-doped Zn0.9Mg0.1O (ZMO:Ga) thin films were deposited on glass substrates by pulsed laser deposition (PLD) technique. The properties of the films were characterized through hall effect, double beam spectrophotometer, atomic force microscope (AFM) and X-ray diffraction (XRD). The effects of substrate temperature and post deposition vacuum annealing on structural, electrical and optical properties of ZMO:Ga thin films were investigated. The experimental results show that the electrical resistivity of the film deposited at 200℃ is 8.12× 10^-4Ω·cm, and can be further decreased to 4.74×10^-4Ω·cm with post annealing at 400℃ for 2h under 3×10^-3pa. In the meantime, its band gap energy can be increased to 3.90eV from 3.83eV. The annealing process leads to the improvement of (002) orientation, wider band gap, increased carrier concentration and blue shift of absorption edge in the transmission spectra of ZMO:Ga thin films.