位置:成果数据库 > 期刊 > 期刊详情页
基于Hilbert-Huang变换和SVM的煤矸界面探测方法
  • ISSN号:1009-6094
  • 期刊名称:《安全与环境学报》
  • 时间:0
  • 分类:TN911.72[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]山东工商学院信息与电子工程学院,山东烟台264005, [2]中国矿业大学(北京)机电与信息工程学院,北京100083
  • 相关基金:国家自然科学基金项目(60970105);中国煤炭工业协会科学技术研究指导性计划项目(MTKJ2010-432)
中文摘要:

为了解决综采工作面煤矸界面探测问题,提出了利用煤矸下落冲击钢板的振动特征来探测煤矸界面的新方法。煤矸振动信号表现出非平稳特征,采用EMD方法可以将复杂矿井环境下的煤矸振动加速度信号分解成固有模态分量,每个模态分量都包含了特有的时间尺度特征。将包含煤矸振动特征的前6个IMF分量的能量,结合均值、方差及峭度等时域特征值,构成9维特征模式,作为SVM分类器的输入进行训练及分类。结果表明,基于Hilbert-Huang变换的IMF分量的能量特征能够反映煤矸振动特征的差异,SVM分类方法能够准确判断煤矸混合状态。

英文摘要:

The present paper is aimed to introduce a new method of detecting coal gangue interface in the case of a fully mechanized mining work-face by using vibrating signals of the coal gangue. Due to the non-stationary characteristic features of the response signals in the complicated environment, it is possible for us to use the empirical mode decomposition (EMD) to decompose the original vibration signals into its intrinsic mode components (IMFs), which are characteristic of intrinsic time scale. In addition, since EMD behaves as an adaptive data-driven filter bank and can extract the signal features of the disturbance in accordance with their different physical properties. Since EMD proves to be more efficient than the conventional frequency-domain filtering waves for noise rejection, it is possible for us to use them to extract the IMFs, which can greatly help to offer us various kinds of information of the coal and gangue regardless of the noise interference and greatly improve the disturbance ratio. Moreover, the signals of interest can be clearly displayed in the time frequency domain. The IMFs contain different frequency components and denote stationary signal under the special characteristic scale. So the energy of IMFs can reflect the change of the vibration signals of the coal and gangue. And, finally, on the basis of above analysis, we have worked out the energy features of the first six IMFs and the other three time-involved parameters, such as the inputs of supporting vector machine for the simulation experiments. Furthermore, the coal-gangue interface detection is actually considered as a two-phase classification problem and the SVM is also advantageous in a two-class classification based on the search of the structural risk minimization, supported by few learning samples. Thus, our experimental results prove that the HHT technique mentioned here is highly potential in detecting vibration signals of coal and gangue and SVM can therefore be applied to classify and test the actual status of coal-gan

同期刊论文项目
期刊论文 52 会议论文 5 获奖 2 著作 3
同项目期刊论文
期刊信息
  • 《安全与环境学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国兵器工业集团公司
  • 主办单位:北京理工大学 中国环境科学学会 中国职业安全健康协会
  • 主编:冯长根
  • 地址:北京市海淀区中关村南大街5号
  • 邮编:100081
  • 邮箱:aqyhjxb@263.net;aqyhjxb@wuma.com.cn
  • 电话:010-68913997
  • 国际标准刊号:ISSN:1009-6094
  • 国内统一刊号:ISSN:11-4537/X
  • 邮发代号:2-770
  • 获奖情况:
  • 获首届《CAJ-CD》执行优秀期刊奖,中国科技论文统计源期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:17182