利用室内模拟试验,探讨了三峡水库消落区淹没后土壤、植物汞释放特征及其在斑马鱼体的富集水平.结果表明,随淹水时间的延长,淹没土壤中总汞(THg)含量下降;水体THg浓度总体明显升高.淹没土壤及水体中甲基汞(MMHg)含量总体明显上升,其中稗草+土壤处理水体中增加尤为明显,淹水21 d后,其浓度是土壤处理的2.52倍.表明消落区土壤、植物是水库水体汞的一个重要来源.供试稗草淹水分解造成水体pH及溶解氧(DO)含量下降、溶解性有机碳(DOC)含量上升,对土壤MMHg含量无明显影响,对水体MMHg影响较大.供试斑马鱼头部、内脏及肌肉中THg含量总体明显上升,与水体中THg浓度具有显著相关性(P〈0.01).鱼体头部、内脏及肌肉中均出现不同程度的MMHg富集现象,以头部与肌肉最为明显.淹水21 d后,添加土壤处理的鱼体头部、内脏及肌肉MMHg增加的含量分别是对照的1.75-6.25、3.53-8.38、2.22-3.36倍;稗草+土壤处理的分别是土壤处理的3.57、2.37、1.52倍.可见,淹没土壤是鱼体MMHg增加的重要来源,淹没植物改变原水环境条件影响其向水体释汞过程能提高鱼体中MMHg含量.
To investigate the production,distribution and bioavailability of methylmercury( MMHg) in soil and plants of the waterlevel-fluctuating zone( WLFZ) of the Three Gorges Reservoir area,simulation experiments were conducted in laboratory. Results indicated that the level of total mercury( THg) in soil decreased with the lengthening of submerging time while that in water increased obviously. The level of MMHg in inundated soil and water increased,especially in the water treated by Echinochloa crusgalli and soils.And the MMHg level in that treatment was 2. 52 times higher than that treated only by soils for 21 days. This indicated that soil and plants of WLFZ were important sources of mercury in the water of the reservoir. Echinochloa crusgalli as the tested plant was decomposed after being submerged,leading to lower pH and DO and higher DOC,which had little effect on MMHg in soil but significant effect on MMHg in water. The level of THg in the head,viscera and muscle of zebrafish increased obviously,which had a significant correlation with that in water( P〈0. 01). MMHg levels accumulated in the head,viscera and muscle of zebrafish differed to some degree,particularly in the head and muscle. After treated in the soils for 21 days,MMHg levels in the head,viscera and muscle of zebrafish were 1. 75-6. 25,3. 53-8. 38 and 2. 22-3. 36 times higher than those in the control groups,respectively. While for the treatment of Echinochloa crusgalli and soil,MMHg levels in zebrafish's head,viscera and muscle were 3. 57,2. 37 and 1. 52 times higher than those treated only by soil,respectively. Therefore,submerged soil was the main source of MMHg in fish. And submerged plants changed the water condition and affected the release of mercury to water so as to cause elevated levels of MMHg in fish.