基于排放源处理(SMOKE)模型、综合空气质量(CMAQ)模型与气象预报(WRF)模型初步搭建山东省空气质量预报平台,利用污染物在线监测数据和气象站观测数据检验预报平台的预报效果。结果表明,预报平台气象模块的预测效果与文献研究结果较一致;由CMAQ模型对2014年济南、淄博、烟台、威海的SO2、NO2、PM2.5质量浓度进行预测,SO2、NO2、PM2.5预报平均值分别在17.65-48.97、18.69-45.43、34.97-79.15μg/m3;SO2、NO2、PM2.5预报值与监测值的相关系数在0.52-0.74,标准化平均偏差、标准化平均误差、平均相对偏差、平均相对误差分别在-34.00%--5.73%、11%-47%、-25.00%--10.21%、20%-42%,预报平台具有良好的预报性能。最后,对未来空气质量数值预报平台的发展提出建议。
An air quality numerical prediction platform in Shandong Province was built based on Sparse Matrix Operator Kernel Emissions model(SMOKE)/Community Multiscale Air Quality(CMAQ)model/Weather Research and Forecasting(WRF)model.The PM2.5pollutants online monitoring data and meteorological observation data were used to evaluate the prediction effect.Results showed that the performance of meteorological model prediction was well consistent with literature research;the predicted annual average SO2,NO2,PM2.5of four city(Jinan,Zibo,Yantai and Weihai)of Shandong in 2014 was 17.65-48.97,18.69-45.43,34.97-79.15μg/m3 separately by CMAQ model with correlation coefficient between predicted data and observed data ranged 0.52-0.74.The statistical parameters of normalized mean deviation,normalized mean error,mean relative deviation,mean relative error were-34.00%--5.73%,11%-47%,-25.00%--10.21%,20%-42% separately,which indicated better prediction performance of Shandong air quality numerical prediction platform.Finally,some suggestions on the development of numerical forecast platform were put forward.