在Orlicz-Sobolev空间中利用临界点理论考虑了非齐次拟线性椭圆方程{-div(φ(|▽u|)▽u)=μ|u|q-2u+ λ|u|p-2u在Ω中,u=0在(a)Ω上无穷多解的存在性,其中Ω是RN中边界光滑的有界区域, μ,λ∈R是两个参数.
In this paper we show that the inhomogeneous quasilinear elliptic equations {-div(φ(|▽u|)▽u)=μ|u|q-2u+ λ|u|p-2u in Ωu=0 on αΩ,where Ω C R^N is a bounded domain with smooth boundary αΩ, and μ, ∈ R are two pa- rameters, possess infinitely many weak solutions in Orlicz-Sobolev space by using variational methods.