考虑一类含双参数(λ1,λ2)的φ-Laplace二阶非线性微分系统的半正问题,在适当的非线性项条件下,利用锥上的不动点定理,建立了问题至少一个正解的存在性结果,并给出了参数(λ1,λ2)的显式开区域.所得结论对于p-Laplace情形也是新的.另外,给出了具体的例子来说明结果的应用.
Concerned is a semipositone problem of φ-Laplacian system with a pair of parameter (λ1, λ2 ). Un- der suitable conditions imposed on the nonlinearity, it is shown by fixed point method that the problem has at least one positive solution for (λ1, λ2 ) belonging to an explicit open region. The obtained result is new even for p-Laplacian boundary value problems and it is illustrated with an example.