位置:成果数据库 > 期刊 > 期刊详情页
基于Hadoop的超像素分割算法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:哈尔滨工程大学计算机科学与技术学院,哈尔滨150001
  • 相关基金:国家自然科学基金项目(61472095,61502116); 黑龙江省教育厅智能教育与信息工程重点实验室开放基金项目
中文摘要:

特征选择旨在从原始集合中选择一个规模较小的特征子集,该子集能够在数据挖掘和机器学习任务中提供与原集合近似或者更好的表现.在不改变特征物理意义的基础上,较少特征为数据提供了更强的可解读性.传统信息论方法往往将特征相关性和冗余性分割判断,无法判断整个特征子集的组合效应.将数据融合领域中的关联信息熵理论应用到特征选择中,基于该方法度量特征间的独立和冗余程度.利用特征与类别的互信息与特征对组合构建特征相关矩阵,在计算矩阵特征值时充分考虑了特征子集中不同特征间的多变量关系.提出了特征排序方法,并结合参数分析提出一种自适应的特征子集选择方法.实验结果表明所提方法在分类任务中的有效性和高效性.

英文摘要:

Feature selection aims to select a smaller feature subset from the original feature set.The subset can provide the approximate or better performance in data mining and machine learning.Without transforming physical characteristics of features,fewer features give a more powerful interpretation.Traditional information-theoretic methods tend to measure features relevance and redundancy separately and ignore the combination effect of the whole feature subset.In this paper,the correlation information entropy is applied to feature selection,which is a technology in data fusion.Based on this method,we measure the degree of the independence and redundancy among features.Then the correlation matrix is constructed by utilizing the mutual information between features and their class labels and the combination of feature pairs.Besides,with the consideration of the multivariable correlation of different features in subset,the eigenvalue of the correlation matrix is calculated.Therefore,the sorting algorithm of features and an adaptive feature subset selection algorithm combining with the parameter are proposed.Experiment results show the effectiveness and efficiency on classification tasks of the proposed algorithms.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679