针对阴影、反光及遮挡等原因破坏图像低秩结构这一问题,提出基于低秩子空间恢复的联合稀疏表示识别算法.首先将每个个体的所有训练样本图像看作矩阵D,将矩阵D分解为低秩矩阵A和稀疏误差矩阵E,其中A表示某类个体的‘干净’人脸,严格遵循子空间结构,E表示由阴影、反光、遮挡等引起的误差项,这些误差项破坏了人脸图像的低秩结构.然后用低秩矩阵A和误差矩阵E构造训练字典,将测试样本表示为低秩矩阵A和误差矩阵E的联合稀疏线性组合,利用这两部分的稀疏逼近计算残差,进行分类判别.实验证明该稀疏表示识别算法有效,识别精度得到了有效提高.
In consideration of the cast shadows,specularities,occlusions and corruptions in the images that violate the low-rank structure,a novel recognition method of joint sparse representation based on low-rank subspace recovery is proposed.Firstly,using all training images of each class to form a data matrix D,we can decompose D as the sum of a low-rank matrix A and a sparse error matrix E,where A denotes the"clean"images which follow strictly the low-rank subspace structure and E accounts for cast shadows,specularities,occlusions and corruptions in the images that violate the low-rank structure.Then the test sample can be represented as the linear combination of dictionary which is composed of low rank matrix and error matrix,using the sparse approximation of this two parts calculates the residual which used for classification.Experiment results show that the algorithm is effective,and effectively improve the recognition accuracy.