本文主要介绍一类带有治愈率的HIV感染的CD4^+T细胞模璎的动力学性质。同时证明了如果基本再生数R0〈1。HIV感染消失;如果R0〉1。HIV感染持续.然后进行数值模拟。给出了地方性平衡点E^*全局稳定的参数域,得到了地方性平衡点E^*不稳定时周期解存在.
In this paper,we propose a mathematical model for HIV infection of CD4^+ T cells with cure rate. Global dynamics of the model is rigorously established. We prove that, if the basic repro-duction number Ro 〈1 , the HIV infection is cleared from the T-cell population;if R0〉 1 , the HIV infection persists. For an open set of parameter values, the chronic-infection equilibrium E^* can beunstable and periodic solutions may exist. We establish parameter regions for which E^* is globally stable.