基于Desanto的谱表示法,采用数值和近似算法相结合的混合算法对一维粗糙面的重构问题进行了研究.对于正问题,采用数值算法——矩量法(MOM)得到一维粗糙面的相关散射数据,对于逆问题,考虑不同粗糙度的粗糙面,分别采用两种近似算法——微扰近似(SPA)、基尔霍夫近似(KA)与矩量法的混合算法,对粗糙面轮廓进行了重构;数值结果以高斯粗糙面为例,给出了混合算法对不同粗糙度粗糙面的重构算例,并进行了数据比较和分析.
Based on the Desanto's spectral formalism,using the hybrid method that combines the numerical and approximate algorithms,the reconstruction problem for the one-dimensional rough surface is investigated. For the direct problem,the scattering data is obtained by the numerical algorithm—the method of moments ( MOM). For the inverse problem,the profile of rough surface with different roughness is reconstructed by two approximate algorithms—the small perturbation approximation (SPA) and the Kirchhoff approximation (KA) combined with the method of moments. Taking the Gaussian rough surface for example,the numerical results of reconstructed rough surface with different roughness are presented for the hybrid method,and the data are compared and analyzed.