位置:成果数据库 > 期刊 > 期刊详情页
基于稀疏编码和多核学习的图像分类算法
  • ISSN号:1006-2467
  • 期刊名称:《上海交通大学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]上海交通大学电子信息与电气工程学院,上海200240
  • 相关基金:国家自然科学基金资助项目(61071153),教育部新世纪优秀人才支持计划(NCET-i0-0569)
中文摘要:

提出了一种基于稀疏编码和多核学习的图像分类算法.首先从图像中提取Dense—SIFT(DenseScale—Invariant Feature Transform)和Dense—SURF(Dense Speeded UP Robust Feature)2种特征,使用稀疏编码对特征点进行处理,得到一系列高维向量,然后对这些高维向量应用max—pooling算法,将图像表示成单个向量.最后,使用改进的多核学习方法对这些向量进行分类,对于不同的特征,使用不同核的组合以达到最好的分类效果.实验结果表明,该算法作为词袋(Bow)模型的改进,能够提高分类准确率.

英文摘要:

An image classification algorithm based on sparse coding and multiple kernel learning (MKI.) was proposed. First, D-SIFT (Dense Scale-Invariant Feature Transform) and D-SURF (Dense Speeded Up Robust Feature) are extracted from images. Then, sparse coding method is adopted to represent an im- age as a vector and max pooling method is also utilized for both features. Finally, an improved MKL is used to classify those vectors. Appropriate kernel combinations are selected for each feature and the final result is the fusion of both. The experiments demonstrate that the algorithm remarkably improves the clas- sification accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《上海交通大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:上海交通大学
  • 主编:郑杭
  • 地址:上海市华山路1954号15F
  • 邮编:200030
  • 邮箱:shjt@chinajournal.net.cn
  • 电话:021-62933373 62932534
  • 国际标准刊号:ISSN:1006-2467
  • 国内统一刊号:ISSN:31-1466/U
  • 邮发代号:4-256
  • 获奖情况:
  • 1996年全国优秀科技期刊奖,1992年、1996年、1999年国家教育部系统优秀科技期刊奖,2002年“百种重点期刊奖”,2003年百种中国杰出学术期刊,2004年教育部全国高校优秀科技期刊一等奖,2004年“百种重点期刊奖”
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:30903