用可变分离途径,我们与任意的可变分离函数获得一个一般准确解决方案为(2+1 ) 维的 Maccari 系统。在种子答案的 Byintroducing Jacobi 椭圆形的功能 dn 和 nd,二倍地周期的宣传的二种类型挥动模式被导出。我们与增加的模量 k 一起调查波浪模式进化,许多重要、有趣的性质被揭示。
Using the variable separation approach, we obtain a general exact solution with arbitrary variable separation functions for the (2+ 1)-dimensional Maccari system. By introducing Jacobi elliptic functions dn and nd in the seed solution, two types of doubly periodic propagating wave patterns are derived. We invest/gate the wave patterns evolution along with the modulus k increasing, many important and interesting properties are revealed.