欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
期刊
> 期刊详情页
Thermodynamic perturbation theory in fluid statistical mechanics
ISSN号:1063-651XElectronic Resource Number: 04530110.1103/PhysRevE.71.045301
期刊名称:Physical Review E
时间:0
页码:478-485
语言:英文
相关项目:复杂流体中的表面相变及其热力学效应
作者:
Zhou, SQ|
同期刊论文项目
复杂流体中的表面相变及其热力学效应
期刊论文 21
同项目期刊论文
'Exact' integral equation theory and local formulation for excess thermodynamic properties of hard s
Statistical mechanics approach to inhomogeneous van der Waals fluids
Improvement on macroscopic compressibility approximation and beyond
Local structures of fluid with discrete spherical potential: Theory and grand canonical ensemble Mon
Structural properties of a model system with effective interparticle interaction potential applicabl
Fifth-order thermodynamic perturbation theory of uniform and nonuniform fluids
Phase behaviour of purely repulsive systems: Violation of traditional van der Waals picture
Phase behavior of density-dependent pair potentials
Third-order thermodynamic perturbation theory for effective potentials that model complex fluids
Bridge density functional approximation for non-uniform hard core repulsive Yukawa fluid
A new scheme for perturbation contribution in density functional theory and application to solvation
Progress in the perturbation approach in fluid and fluid-related theories
Low temperature behavior of thermodynamic perturbation theory.
How critical fluctuations influence adsorption properties of a van der Waals fluid onto a spherical
Solid phase thermodynamic perturbation theory: Test and application to multiple solid phases
Density functional approximation for van der Waals fluids: based on hard sphere density functional a
Accurate and local formulation for thermodynamic properties directly from integral equation method
Local structure and thermodynamics of a core-softened potential fluid: Theory and simulation
Can the second virial coefficient be a predictor for the critical temperature?
Performance evaluation of third-order thermodynamic perturbation theory and comparison with existing