位置:成果数据库 > 期刊 > 期刊详情页
基于矩阵正态分布似然比测试的矩阵度量学习算法
  • ISSN号:1672-3961
  • 期刊名称:《山东大学学报:工学版》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京航空航天大学计算机科学与技术学院,江苏南京210016
  • 相关基金:国家自然科学基金资助项目(61170151)
中文摘要:

本研究基于KISS(keep it simple and stupid)算法,利用似然比测试直接为矩阵模式定义度量,解决了现有大多数度量学习算法需要经过复杂优化过程的问题。通过在似然比测试中有目的地引入矩阵正态分布,该度量无需将矩阵模式通过向量化的方法变成向量模式,因而具有如下优点:(1)能够避免维数灾难;(2)比KISS更鲁棒;(3)无需计算大矩阵的逆和特征值分解,因此计算远快于KISS算法。最终的实验验证了该算法的优势。

英文摘要:

Most metric learning algorithms involve tedious optimization procedure. In order to solve this problem, a metric for matrix data by using likelihood ratio test was defined based on the KISS algorithm ( keep it simple and stu- pid). By introducing the matrix normal distribution into the likelihood ratio test, the proposed metric does not need to transform matrix pattern into vector pattern. The results showed that this algorithm could avoid the curse of dimension, could be more robust than KISS, and would not need to compute the inverse and eigen-decomposition of high dimen- sional matrix, which was faster than KISS. Experiments verified the advantages of the proposed algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《山东大学学报:工学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:山东大学
  • 主编:李术才
  • 地址:山东济南市经十路17923号
  • 邮编:250061
  • 邮箱:xbgxb@sdu.edu.cn
  • 电话:0531-88396452
  • 国际标准刊号:ISSN:1672-3961
  • 国内统一刊号:ISSN:37-1391/T
  • 邮发代号:24-221
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:6258