为了对未知分类信息的三维模型进行分类,提出三维模型分类识别算法。首先以改进的形状直径函数(shape diameter function ,SDF)特征描述符为基础对所有三维模型提取特征向量,并将未知分类信息的三维模型作为测试模型,在已知分类的三维模型数据库中找到与测试模型最相似的 k个模型;然后在这 k个模型中利用稀疏表示分类方法对测试模型进行识别;最后确定测试模型在三维模型数据库中的分类信息。实验结果表明,该算法简单且易于实现,具有较高的识别准确率及较强的鲁棒性。
To classify 3D models whose classification information is unknown prior ,this paper proposes a recognition algorithm for 3D models .Firstly ,the algorithm extracts feature vectors for each 3D model based on an improved shape diameter function (SDF ) feature descriptor .Secondly ,each 3D model ,whose classification information is unknown ,is regarded as the test model .And then the algorithm finds k models ,which are similar with the test model ,in the 3D models database where each model's classification information is know n in advance .Finally the sparse representation classifier is applied to the test model and the k models to determine the classification information of the test model in the 3D models database . Experimental results show that the algorithm is simple and easy to implement .Besides ,the algorithm is highly accurate and robust .