位置:成果数据库 > 期刊 > 期刊详情页
一种新的数据流频繁度变化趋势预测算法
  • ISSN号:1008-973X
  • 期刊名称:《浙江大学学报:工学版》
  • 时间:0
  • 分类:TP311.13[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]浙江大学智能系统与控制研究所,浙江杭州310027, [2]浙江大学公共管理学院,浙江杭州310027
  • 相关基金:国家“863”高技术研究发展计划资助项目(2008AA042902),国家“973”重点基础研究发展计划资助项目(2007CB714000),浙江省科技型中小企业技术创新资金资助项目(2009D40034).
中文摘要:

针对数据对象在数据流中的频繁度变化趋势的预测问题,提出基于最大最小频率时间窗模型的最大最小频繁趋势预测算法(MM-FTP).设计一种新的最大最小频繁模式树结构(MMFP-Tree),存储数据流概要信息;提出一种新的数据对象频繁度变化趋势衡量指标——频繁度变化率(FCR),定量地对数据对象的频繁度变化趋势进行描述.该算法同样能够对数据流分类置信度变化趋势及传统的指数变化趋势进行有效预测.结果表明,在真实的网络点击数据流上,该算法能够快速准确地预测数据对象的频繁度变化趋势.

英文摘要:

For the frequency tendency prediction problem of itemsets over streams, a novel max-rain frequency tendency prediction (MM-FTP) algorithm is proposed based on the Max-Min Frequency Window model. A max-rain frequency pattern Tree (MMFP-Tree) structure is established to store the summary information of streams a new measure frequency changing rate (FCR) is presented to describe the frequency tendency of itemsets quantitatively. The MM-FTP algorithm is useful in the index tendency prediction and the confidence prediction of classification. Based on the result of the case study on web log data stream, the MM-FTP algorithm could be used to predict the frequency tendency efficiently and effectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《浙江大学学报:工学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:浙江大学
  • 主编:岑可法
  • 地址:杭州市浙大路38号
  • 邮编:310027
  • 邮箱:xbgkb@zju.edu.cn
  • 电话:0571-87952273
  • 国际标准刊号:ISSN:1008-973X
  • 国内统一刊号:ISSN:33-1245/T
  • 邮发代号:32-40
  • 获奖情况:
  • 2000年获浙江省科技期刊质量评比二等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:21198