位置:成果数据库 > 期刊 > 期刊详情页
基于分类父块库特征的快速分形编码算法
  • ISSN号:1673-629X
  • 期刊名称:《计算机技术与发展》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:南京邮电大学理学院,江苏南京210023
  • 相关基金:基金项目:国家自然科学基金面上项目(11471114,61372125)
中文摘要:

基本分形图像压缩编码算法虽然是一种很有前途的限失真编码方法,但是它存在着编码时间较长、计算复杂度较高的缺点。为了解决分形图像压缩编码算法编码时间过长的问题,基于图像的父块特征,提出了一种改进算法。该算法利用图像父块的几何特征预先把父块库分成Ds、De、Dm三大类,通过在各个类中运用相应的特征将搜索范围限制在与子块特征值相近的邻域内,即将类内全局搜索最佳匹配块转化为类内局部搜索最佳匹配块,有效地减少了搜索对象,从而进一步加快了编码速度。应用该算法与其他算法进行了多次仿真对比实验。实验结果表明,相对于其他算法,在保证一定重建图像质量的前提下,所提出算法的图像编码时间明显缩短,较为显著地提高了算法编码的速度。

英文摘要:

The basic fractal image compression encoding algorithm is a finite lossless encoding method that has great significance, but it spends more time on encoding and is more complicated to calculate. In order to reduce the fractal image compression encoding time,an improved algorithm based on the characteristics of the parent block has been proposed in which the parent block is divided into three cate- gories with the image block geometric features in advance, Ds , De , and Dm . Though use of corresponding features in each class, the search range is limited to the neighborhood closed to the sub-block characteristic values, which means that the best matching block of global search in class is turned into local search for the best matching block. The proposed algorithm has effectively reduced the search ob- jects, which can further accelerate the speed of coding. Test simulations for multiple comparisons have been conducted with the proposed algorithm and others. Simulation results show that compared with other ones,the image encoding time of the proposed algorithm is signifi- cantly shortened in the guarantee of the quality of the reconstructed image, which has more significantly improved the encoding speed.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机技术与发展》
  • 中国科技核心期刊
  • 主管单位:陕西省工业和信息化厅
  • 主办单位:陕西省计算机学会
  • 主编:王守智
  • 地址:西安市雁塔路南段99号
  • 邮编:710054
  • 邮箱:ctad@vip.163.com
  • 电话:029-85522163
  • 国际标准刊号:ISSN:1673-629X
  • 国内统一刊号:ISSN:61-1450/TP
  • 邮发代号:52-127
  • 获奖情况:
  • 《CAJ-CD规范》执行优秀期刊
  • 国内外数据库收录:
  • 中国中国科技核心期刊
  • 被引量:21263