本文利用广义差分法讨论了二维粘弹性问题.建立了二维粘弹性问题的广义差分格式,给出了一种新的初始值近似,证明了广义差分解的最优L^p计和W^l,p(2≤p≤∞)模估计,同时得到了广义的Ritz-Volterra投影和广义差分解之间的超收敛的W^l,p(2≤p≤∞)模的误差估计.最后给出了一个数值算例以验证该方法的可行性.
In this paper, generalized difference methods(GDM) for two-dimensional viscoelastic problems are proposed and analyzed. The special initial values are given in the generalized difference scheme, so we obtain optimal error estimates in L^p and W^l,P(2≤_ p≤ ∞) as well as some superconvergence estimates in W^l,p(2≤ p ≤∞) between the GDM solution and the generalized Ritz-Volterra projection of the exact solution. And finally, a numerical example is given.