设{Xn,n≥1}是实可分Banach空间独立随机变量,讨论了在弱大数律的假设下使得Chung-Teicher型强大数律也成立,即bn^-1||∑k=1^n(Xk-EXkI(||Xk||≤bk))||→^p0当且仅当bn^-1||∑中k=1^n(Xk-EXkI(||Xk||≤bk))||→^a.s.0.
Let{Xn,n≥1} be independent random variables in a real separable Banach space, and the Chung-Teicher type conditions for the SLLN under the assumptions that the weak laws of large numbers hold were doscissed, which is bn^-1||∑k=1^n(Xk-EXkI(||Xk||≤bk))||→^p0holds if and only if k=1^n(Xk-EXkI(||Xk||≤bk))||→^a.s.0. holds.