位置:成果数据库 > 期刊 > 期刊详情页
应用粒子群算法的遥感信息与水稻生长模型同化技术
  • 期刊名称:遥感学报.2010,14(6):1226-1240
  • 时间:0
  • 分类:TP79[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]南京农业大学江苏省信息农业高技术研究重点实验室,江苏南京210095
  • 相关基金:国家自然科学基金(编号:30900868,30871448);教育部新世纪优秀人才支持计划(编号:NCET-08-0797).
  • 相关项目:基于生长模型和遥感信息耦合的小麦生产力预测研究
中文摘要:

在研究遥感信息和水稻生长模型的同化过程中,最小化遥感反演与生长模型(RiceGrow)输出的水稻生长信息差值绝对值时引入了一种新的优化算法一粒子群算法(pso),并对比了其与模拟退火算法(SA)的优缺点;探讨了叶面积指数(LAI)和叶片氮积累量(LNA)分别作为同化参数时的同化效果。结果表明,PSO无论是从同化效率还是反演精度上都要好于SA,粒子群优化算法足一种可靠的遥感与模型同化算法;LAI和LNA作为外部同化参数时各有优势,LAI作为同化参数可获得较准确的播期及播种量,而LNA作为同化参数可获得更为准确的施氮量信息。但是LAI作为外部同化参数时的反演结果总体要优于利用LNA作为同化参数时的反演结果。利用试验资料对该技术进行了测试和检验,结果显示反演的模型初始参数的平均值与真实值的相对误差(RE)均小于2.5%,均方根误差(RMSE)为0.72.2,产量模拟值与实测值之间的相对误差为5%左右,模拟与实测相关指标值吻合度较高,该同化技术具有较好的适用性。从而为生长模型从单点扩展到区域尺度应用奠定了基础。

英文摘要:

The choice of optimization method is very important in the assimilation process of crop growth model and remote sensing data, and it concerns the running efficiency and result accuracy of assimilation. In this study, a new optimization--Particle Swarm Optimization (PSO) technique is used for assimilating remote sensing data and RiceGrow model in minimizing difference between inverted and simulated values by remote sensing and RiceGrow model. We compare PSO with another optimization--Simulated Annealing (SA) and explored the assimilation result when LAI and LNA are used as external assimilation parameters respectively. The results show that PSO performed better than SA in both running efficiency and assimilation result, which indicates that PSO is a reliable optimization method for assimilating remote sensing information and model. LAI and LNA each have advantage as external assimilation parameters, sowing date and seeding rate can be well inverted when LAI is selected as external assimilation parameter, while nitrogen rate is better predicted using LNA. However, the inverted result is better when LAI is employed as external assimilation parameter. Experiment data is used to test the assimilation technique and result shows that the relative errors for initial parameters of growth model and yield are less than 2.5% and 5%, respectively. RMSE values are between 0.7 and 2.2, which indicates that the assimilation technique based on PSO is reliable and applicable and that this new assimilation technique can lay the foundation for crop model application from spot to region scale.

同期刊论文项目
同项目期刊论文