位置:成果数据库 > 期刊 > 期刊详情页
基于M-SVR与RVFLNs的高炉十字测温中心温度估计
  • ISSN号:1005-3026
  • 期刊名称:《东北大学学报:自然科学版》
  • 时间:0
  • 分类:TP182[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:东北大学流程工业综合自动化国家重点实验室,辽宁沈阳110819
  • 相关基金:国家自然科学基金资助项目(61473064,61290323,61333007,61290321,61621004);中央高校基本科研业务费专项资金资助项目(N160805001,N160801001);辽宁省教育厅科技项目(L20150186).
中文摘要:

由于高炉中心温度较高,十字测温中心位置传感器极易损坏,并且更换周期长,因而导致无法及时判断炉顶煤气流分布.采用多输出支持向量回归(M-SVR)和随机权神经网络(RVFLNs)两种数据驱动智能建模方法建立高炉十字测温中心带温度估计模型,并基于实际工业数据对建立的模型进行验证和比较分析.结果表明,在样本数量较小时,M-SVR模型和RVFLNs模型都具有较好的温度估计效果,但当样本数量充足时,M-SVR模型的泛化性能和估计精度更优于RVFLNs模型.

英文摘要:

Due to the high temperature in the middle of blast furnace, the central position sensor of the cross temperature measuring is very easy to be damaged, and the replacement period is always long, resulting in the gas flow distribution not being observed in time. To this end, two kinds of data: based intelligent modeling methods of multi-output support vector regression machine ( M - SVR) and random vector functional-link networks ( RVFLNs) were used to establish the temperature estimation model of cross temperature measuring center of blast furnace. Finally, the temperature estimation model based on industrial data was verified and compared. The results show that both M - SVR model and RVFLNs model have good temperature estimation effect when the sample size is small. However, when the sample size is large enough, the generalization performance and estimation accuracy of M - SVR model is better than those of the RVFLNs model.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《东北大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:东北大学
  • 主编:汪晋宽
  • 地址:沈阳.南湖
  • 邮编:110819
  • 邮箱:
  • 电话:024-83687378
  • 国际标准刊号:ISSN:1005-3026
  • 国内统一刊号:ISSN:21-1344/T
  • 邮发代号:8-120
  • 获奖情况:
  • 全国优秀科技期刊二等奖,教育部优秀高校自然科学学报一等奖二次,获原冶金部科技期刊质量评比一等奖三次,中国期刊方阵“双百”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23296