薄片状的公寓板界面层的稳定性被为 disturbulence 振幅功能解决线性 Orr-Sommerfeld 方程数字地调查。这些方程包括粘性,密度层化,和散开的学期。Neutralstability 曲线和批评 Re 数字被计算因为各种各样的理查森(Ri ) 数字 andSchmidt (Sc ) 数。结果显示出那越大 Ri,越 larger 为 Sc 【10 的批评 Re。流动为 Ri 【 是稳定的 0,当 Sc 是很小的或集体散开系数很大时。要不是 Ri 】 0,散开的效果为 Sc 【 被颠倒 10。为 Sc 10,批评当 Sc 为一个给定的 Ri 数字增加, Rerapidly 减少到零。当 Ri 增加,批评 Re 很快减少。
The stability of the laminar flat plate boundary layer is investigated numerically by solving the linear Orr-Sommerfeld equations for the disturbulence amplitude function. These equations include the terms of viscosity, density stratification, and diffusion. Neutral stability curve and the critical Re numbers are computed for various Richardson (Ri) numbers and Schmidt (Sc) numbers. The results show that the larger the Ri, the larger the critical Re for Sc 〈 10. The flow is stable for Ri 〈 0, when Sc is very small or the mass diffusion coefficient is very large. But for Ri 〉 0, the effects of diffusion are reversed for Sc 〈 10. For Sc 〉 10, the critical Re rapidly decreases to zero as the Sc increases for a given Ri number. The critical Re rapidly decreases as the Ri increases.