本文主要研究差分方程xn+1=∑i=1^taixn-mi/q+∑i=1^tcixn-mi+∑k=1^sbkxn-nk,n=0,1,…的全局性质,记A=∑i=1^tai,B=∑k=1^tbk,C=∑i=1^tci和l=max{xt,ns},其中ai〉0,ci〉0(i=1,2,…,t),bk〉0(k=1,2,…,s),q〈A,B≠C,0≤m1〈m2〈…〈mt,0≤n1,〈n2〈…〈ns,且{m1,m2,…,mt}∩{n1,n2,…,ns}=Ф,初始值为正实数。通过构造恰当的方程组和二元函数,证明该方程的唯一平衡解是局部稳定的并且是全局吸引子,得到其平衡解是全局渐近稳定的结论。
In this paper, the global characteristics of the following difference equations are investigated.xn+1=∑i=1^taixn-mi/q+∑i=1^tcixn-mi+∑k=1^sbkxn-nkLet A =∑i=1^tai,B=∑k=1^tbk,C=∑i=1^tciand l =max{mr ,n,}, where ai ai〉0,ci〉0(i=1,2,…,t),bk〉0(k=1,2,…,s),q〈A,B≠C,0≤m1〈m2〈…〈mt,0≤n1,〈n2〈…〈ns,and{m1,m2,…,mt}∩{n1,n2,…,ns}=Ф, and the initial values are positive. By constructing a suitable system of equations and binary functions, it is proved that the unique equilibrium solution of the equation is locally stable and a global attractor. In other words, the solution is globally asymptotically stable.