位置:成果数据库 > 期刊 > 期刊详情页
面向积雨云检测的模糊支持向量机
  • ISSN号:1003-501X
  • 期刊名称:《光电工程》
  • 时间:0
  • 分类:TP75[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]宁波大学信息科学与工程学院,浙江宁波315211
  • 相关基金:国家自然科学基金(61271399,61373068); 宁波市自然科学基金(2011A610192,2013A610055); 宁波市国际合作项目(2013D10011); 宁波大学学科项目(XKXL1306)
中文摘要:

为解决SVM在积雨云检测中的难题,本文构造了一种模糊支持向量机(FSVM),首先根据训练样本的分布特性,定义了相邻样本距离类中心的距离变化率,然后通过计算距离变化率来剔除训练集中可能的噪声与野值样本,从而有效克服了传统基于紧密度的FSVM在计算最小超球半径时易受噪声与野值干扰的缺点,使得所计算的隶属度能更好地反映不同样本的差异。实验结果表明,对于FY2D卫星云图,采用从不同通道所提取的光谱特征,本文方法的积雨云检测准确率与传统SVM和基于紧密度的FSVM相比,分别平均提高2%和1%,且具有更强的适应性及噪声鲁棒性。

英文摘要:

Using satellite imagery for cumulus cloud detection has an important significance for preventing meteorological disasters. Support Vector Machine(SVM), which can seek the best compromise between the complexity of the model and the learning ability based on finite sample information, is expected to play a role in the cumulus cloud detection. However, the traditional SVM is very sensitive to the samples of noise and outlier, and doesn't possess the skill of fuzzy treatment, which doesn't meet the fuzzy and uneven characteristics of satellite imagery and the complex and diverse cloud patterns. In order to solve the problem of SVM, this paper introduces Fuzzy Support Vector Machine(FSVM) and defines the range-rate of the distances from the adjacent samples to the class center, based on the distribution characteristics of training samples. Then, on the basis of the range-rate, we weed out the possible noises and outliers of training set and overcome the shortcoming that the affinity FSVM is susceptible to noises and outliers at the time of calculating the radius of smallest hyper-sphere, so as to make the obtained membership better reflect the variance of different sample sets. The experimental results show that, for FY2 D satellite imageries, extracting 8-d spectral features from different channels, compared with traditional SVM and affinity FSVM, the accuracies of cumulus cloud detection based on the proposed method increase respectively by about 2% and 1%. The proposed method owns stronger adaptability and noise robustness, and can make better effect on early warning disastrous weather such as thunderstorm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光电工程》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院光电技术研究所 中国光学学会
  • 主编:罗先刚
  • 地址:四川省成都市双流350信箱
  • 邮编:610209
  • 邮箱:oee@ioe.ac.cn
  • 电话:028-85100579
  • 国际标准刊号:ISSN:1003-501X
  • 国内统一刊号:ISSN:51-1346/O4
  • 邮发代号:62-296
  • 获奖情况:
  • 四川省第二次期刊质量考评自然科学期刊学术类质量...,四川省第二届优秀期刊评选科技类期刊三等奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:14003