用K(s,n)表示完全图Kn的一条边被长为s(s≥2)的路Ps+1替代后得到的图.对n≥7,且n-2为素数,刻画了色等价类【K(s,n)]中图的结构特征,进一步,证明了任意任意n≥7,且n-2为素数,K(2,n),K(3,n)是色唯一的.
For a complete graph Kn, let K(s, n) denote the Kn-homeomorph obtained from Kn by replacing one edge of Kn by path Ps+1 with length s. This paper shows the structural features of any graph in the chromatic equivalence class [K(s, n)] and proves that K(2, n), K(3, n) are chromatically unique, where n ≥ 7, and n - 2 is a prime number.