借助电磁感应透明效应,提出在单组分六能级原子介质中实现Thirring模型的方案。从光与原子相互作用的麦克斯韦—薛定谔方程组出发,推得探测场两个偏振分量满足的耦合非线性薛定谔方程,通过控制可调物理参数,实现了(1+1)维的Thirring模型。在此基础上,研究该模型中存在的基孤子,并探讨了该孤子的稳定性。与以前的研究相比,不仅更容易实现的单组分原子、两束激光场,而且该体系还可用来讨论暗暗孤子对。
We propose a scheme to construct a Thirring model via electromagnetically induced transparency(EIT). The system we consider is a cold,resonant atomic gas with a six level configuration and interacting with probe and control fields. We show that under EIT condition the probe field envelope obeys a coupled nonlinear Schr[o]dinger equations,which become a Thirring model when the system parameters are suitably chosen. In the Thirring model,the ground soliton pair solution are presented. And the stability is also discussed. Comparing with the previous study,the present scheme uses only a single atomic species and two beams of laser field,hence is easy for the physical realization;On the other hand,there exists dark-dark soliton pair solution.