对简单图G(V,E),存在一个正整数k,使得映射f:V(G)∪E(G)→{1,2,…,k},如果对uv∈E(G),有f(u)≠f(uv),f(v)≠f(uv),且C(u)≠C(v),则称f是图G的点边邻点可区别全染色,且称最小的数k为图G的点边邻点可区别全色数.本文讨论了星,扇,轮,圈等图的广义Mycielski图的点边邻点可区别全染色,得到了它们的点边邻点可区别全色数,其中每个点的色集合包含该点及其关联边的颜色.
I.et G(V,E) be a simple graph,k be a positive integer, f is a mapping from V(G)∪E(G) to { 1,2,…,k},then it is called the vertex-edge adjacent vertex-distinguishing total coloring of G if uv∈ E(G), f (u)≠f(uv) ,f(v)≠f(uv), uv∈E(G) ,C(u)≠C(v) ,and the minimum number of k is called the vertexedge adjacent vertex-distinguishing total chromatic number of G, where C(u)={f( u)} U (f(uv) } uv∈ E (G) }. In this paper,the vertex-edge adjacent vertex-distinguishing total chromaic number of the general Mycielski graph of some spacial graphs (star,fan,wheel,cycleetc) is studied.