位置:成果数据库 > 期刊 > 期刊详情页
High-Precision Orbit Prediction and Error Control Techniques for COMPASS Navigation Satellite
  • ISSN号:0023-074X
  • 期刊名称:Chinese Science Bulletin
  • 时间:0
  • 页码:-
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程] V474.25[航空宇航科学与技术—飞行器设计;航空宇航科学技术]
  • 作者机构:[1]Beijing Satellite Navigation Center, Beijing 100094, China
  • 相关基金:We would like to thank Prof. Bo Xu from Nanjing University for providing a orbit prediction method for GPS satellite. This work was supported by the National Natural Science Foundation of China (41204022) and the Opening Project of Shanghai Key Laboratory of Space Navigation and Position Techniques (12DZ2273300).
  • 相关项目:COMPASS系统GEO卫星太阳光压模型精化技术研究
中文摘要:

基于人工的神经网络(ANN ) ,模型被建议改进轨道预言的精确的一个新卫星轨道预言方法。以便避免修改动态模型的困难,使用 ANN 模型听说变化轨道预言错误,然后 ANN 的预言结果被尝试模型被用来基于动态模型补偿预言的轨道形成期末考试预言的轨道。实验结果证明轨道预言错误基于 ANN 模型是不到那基于动态模型,和为不同卫星和不同时间的改进效果是不同的。预言 8 的改进的最大的率, 15, 30 ? d 是分别地 80 ?% , 77.77 ?% , 85 ?% 。轨道预言错误控制技术基于背重叠弧的方法比较在它被 ANN 补偿以后,向前被带避免预言的轨道的精确是甚至更坏的风险模型。失败的现象基本上基于这种技术被消除,并且失败的率从 30 被减少 ?% ~ 5 ?% 。这种技术能保证 ANN 模型的设计申请能实现。

英文摘要:

A new satellite orbit prediction method based on artificial neural network (ANN) model is proposed to improve the precision of orbit prediction. In order to avoid the difficulty of amending the dynamical model, it is attempted to use ANN model to learn the variation of orbit prediction error, and then the prediction result of ANN model is used to compensate the predicted orbit based on dynamic model to form a final predicted orbit. The experiment results showed that the orbit prediction error based on ANN model was less than that based on dynamical model, and the ent satellites and different improvement effects for differtime were different. The maximum rates of improvement of predicting 8, 15, 30 d were respectively 80 %, 77.77 %, 85 %. The orbit prediction error control technique based on the method of back overlap arc compare was brought forward to avoid the risk that the precision of predicted orbit is even worse after it is compensated by ANN model. The phenomena of failure were basically eliminated based on this technique, and the rate of failure was reduced from 30 % to 5 %. This technique could ensure that the engineering application of ANN model could come true.

同期刊论文项目
期刊论文 24 会议论文 3 获奖 10
同项目期刊论文
期刊信息
  • 《科学通报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院
  • 主编:周光召
  • 地址:北京东黄城根北街16号
  • 邮编:100717
  • 邮箱:csb@scichina.org
  • 电话:010-64036120 64012686
  • 国际标准刊号:ISSN:0023-074X
  • 国内统一刊号:ISSN:11-1784/N
  • 邮发代号:80-213
  • 获奖情况:
  • 首届国家期刊奖,中国期刊方阵“双高”期刊,第三届中国出版政府奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:81792