喷雾器从在卫星水上的中等分辨率成像分光辐射函数( MODIS )的光深度( AOD )数据与从有直角的极化( CALIOP )的云喷雾器激光雷达的解决高度的喷雾器子类型产品一起,以及表面 PM10 大小,被利用调查在北中国的春季普通的灰尘活动。明确地,在 1721 2010 年 3 月期间发生在北方中国平原(NCP ) 上的一个灰尘暴风雨事件被识别。在北京的 PM10 集中(39.8 ??
The aerosol optical depth (AOD) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Satellite Aqua, along with the altitude-resolved aerosol subtypes product from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP), as well as surface PM 10 measurements, were utilized to investigate the dust activities common in springtime of northern China. Specifically, a dust storm episode that occurred over the North China Plain (NCP) during 17-21 March 2010 was identified. The PM 10 concentration at Beijing (39.8 °N, 116.47 °E) reached the peak value of 283 μgm -3 on 20 March 2010 from the background value of 15 μg m-3 measured on 17 March 2010, then dropped to 176 μgm-3 on 21 March 2010. Analysis of the CALIOP aerosol subtypes product showed that numerous large dust plumes floated over northern China, downwind of main desert source regions, and were lifted to altitudes as high as 3.5 km during this time period. The MODIS AOD data provided spatial distributions of dust load, broadly consistent with ground-level PM 10 , especially in cloud free areas. However, inconsistency between the MODIS AOD and surface PM 10 measurements under cloudy conditions did exist, further highlighting the unique capability of the CALIOP lidar. CALIOP can penetrate the cloud layer to give unambiguous and altitude-resolved dust measurements, albeit a relatively long revisit period (16 days) and narrower swath (90 m). A back trajectory simulation using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model was performed, and it was found that the sand-dust storm originated from the Gobi Desert on 18 March 2010 travelled approxi-mately 1200-1500 km day-1 eastward and passed over the NCP on 19 March 2010, in good agreement with previous findings. In addition, the multi-sensor measurements integrated with the HYSPLIT model output formed a three-dimensional view of the transport pathway for this dust episode, indicating that this episode was largely associated wit