一标记图 G 是从 E (G) 的 bijection 到集合 { 1,2 ... , | E (G)|} 。如果,一个标记是 antimagic 为任何不同顶点 x 和 y,标签的和紧张不安到 x 的事件与标签的和不同紧张不安事件到 y。如果它有 antimagic 标记,我们说一张图是 antimagic。在 1990 推测的 Hartsfield 和 Ringel 除 K 2 以外的每张图是 antimagic。在这份报纸,我们证明 antimagic 推测为断开的图的盒子是假的。而且,我们发现是 antimagic 的断开的图的一些班和其补充被断开的图的一些班是 antimagic。
A labeling of a graph G is a bijection from E(G) to the set {1,2,…,|E (G)| }.A labeling is antimagic if for any distinct vertices x and y,the sum of the labels on edges incident to x is different from the sum of the labels on edges incident to y.We say that a graph is antimagic if it has an antimagic labeling.Hartsfield and Ringel conjectured in 1990 that every graph other than 2 K is antimagic.In this paper,we show that the antimagic conjecture is false for the case of disconnected graphs.Furthermore,we find some classes of disconnected graphs that are antimagic and some classes of graphs whose complement are disconnected are antimagic.