位置:成果数据库 > 期刊 > 期刊详情页
鲁棒的递推核学习建模方法在高炉过程的应用
  • ISSN号:1008-973X
  • 期刊名称:《浙江大学学报:工学版》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术] TQ02[化学工程]
  • 作者机构:[1]浙江大学工业控制技术国家重点实验室,浙江杭州310027, [2]浙江工业大学化工机械设计研究所,浙江杭州310032
  • 相关基金:国家自然科学基金资助项目(61004136)
中文摘要:

针对现场采集时间序列数据中的离群点显著影响时变非线性工业过程在线模型性能这一问题,提出鲁棒的递推最小二乘支持向量机软测量建模方法.在模型训练阶段,采用支持向量聚类(SVC)排除离群点,建立有效的数据区域.将SVC用于递推过程前向学习阶段,并引入更有效的增删节点准则,在快速递推的前提下提高了模型的推广能力.将该方法应用于工业高炉过程铁水的硅质量分数预测,通过试验连续预测566炉高炉铁水硅质量分数,命中率高达81%,预测均方根误差为0.054 7,表明了较其他方法有更好的鲁棒性与精度.

英文摘要:

A robust recursive least squares support vector regression(R-RLSSVR) soft-sensing modeling method was proposed in order to overcome the embarrassment that outliers in the time series have a remarkable negative impact on the online modeling of the time-varying and nonlinear industrial processes.During the learning stage,the support vector clustering(SVC) approach was adopted to detect and remove the outliers and then to obtain the valid data area.Moreover,an improved recursive learning strategy,with nodes online growing and pruning,was developed to enhance the model generalization with a similar computation load.Through an example,the proposed method which was applied to predict the silicon mass fraction in hot metal of blast furnace showed a good performance,with 81% percentage of target hitting and 0.054 7 of the root mean square error of prediction when the size of predicted sample set was 566.These criteria are better than alternative methods,implying that the R-RLSSVR based modeling method is more robust and precise.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《浙江大学学报:工学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:浙江大学
  • 主编:岑可法
  • 地址:杭州市浙大路38号
  • 邮编:310027
  • 邮箱:xbgkb@zju.edu.cn
  • 电话:0571-87952273
  • 国际标准刊号:ISSN:1008-973X
  • 国内统一刊号:ISSN:33-1245/T
  • 邮发代号:32-40
  • 获奖情况:
  • 2000年获浙江省科技期刊质量评比二等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:21198