考虑一类带有参数的拟周期系数线性微分方程系统x(A(ε)+Q(t,ε)x,x∈R^N的可约化性问题,其中ε为参数,A(ε)是常系数矩阵,Q(t,ε)是依赖于ε的拟周期矩阵.设拟周期矩阵Q(t,ε)的频率关于参数ε满足Rtissmann非退化条件,且与A(ε)的特征值满足一定的非共振条件.证明了当Q(t,ε)充分小时,在测度意义下对大多数的ε,微分方程系统是可约化的.
This paper treats the reducibility of system of quasiperiodic linear differential equation :x = (A(ε)+Q(t,ε)x, x ∈ R^n with a parameter ε, where A (ε) is a constant matrix, Q(t,ε) is a quasi- periodic matrix depending on ε. Suppose that the frequency parameter of Q (t, ε) satisfies the Russmann non-degenerate condition and some non-resonant conditions with eigenvalues of A(ε). It is proved that if Q(t,ε) is sufficient small for most ε in the sense of L-measure. the system is reducible.