位置:成果数据库 > 期刊 > 期刊详情页
基于独立分量分析和相关向量机的高光谱数据分类
  • ISSN号:1004-373X
  • 期刊名称:《现代电子技术》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]西北工业大学电子信息学院,陕西西安710129
  • 相关基金:国家自然科学基金(60772133)资助项目
中文摘要:

提出一种独立分量分析(ICA)和相关向量机(RVM)相结合的高光谱数据分类方法,首先采用虚拟维数方法对高光谱数据维数进行估计,在此基础上,采用独立分量分析对数据进行降维,然后采用相关向量机对降维后的数据分类。计算机仿真实验结果表明,该方法在获得较高分类精度的同时大大节省了分类时间。

英文摘要:

A hyperspectral data classification method of combining the independent component analysis(ICA) and relevance vector machine(RVM) is put forward. A method named virtual dimension(VD) is introduced to estimate the dimension of hyperspectral data. On this basis, ICA is used to reduce the dimension, and then RVM is used to classify the data whose dimension has been reduced. The computer simulation results show that the method achieves a high accuracy classification and greatly reduce the classification time.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《现代电子技术》
  • 北大核心期刊(2014版)
  • 主管单位:陕西省信息产业厅
  • 主办单位:陕西电子杂志社 陕西省电子技术研究所
  • 主编:张郁(执行)
  • 地址:西安市金花北路176号陕西省电子技术研究所科研生产大楼六层
  • 邮编:710032
  • 邮箱:met@xddz.com.cn
  • 电话:029-93228979
  • 国际标准刊号:ISSN:1004-373X
  • 国内统一刊号:ISSN:61-1224/TN
  • 邮发代号:52-126
  • 获奖情况:
  • 中国科技核心期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,中国中国科技核心期刊,中国北大核心期刊(2014版)
  • 被引量:37245