By using the super-symmetric quantum mechanics (SUSYQM) method, this paper obtains the analytical solutions for the spin-weighted spheroidal wave equation in the case of s = 2. Based on the derived W 0 to W 4 the general form for the n-th-order super-potential is summarized and is proved correct by mathematical induction. Hence the ground eigenvalue problem is completely solved. Particularly, the novel solutions of the excited state are investigated according to the shape-invariance property.
By using the super-symmetric quantum mechanics (SUSYQM) method, this paper obtains the analytical solutions for the spin-weighted spheroidal wave equation in the case of s = 2. Based on the derived W0 to W4 the general form for the n-th-order super-potential is summarized and is proved correct by mathematical induction. Hence the ground eigenvalue problem is completely solved. Particularly, the novel solutions of the excited state are investigated according to the shape-invariance property.