位置:成果数据库 > 期刊 > 期刊详情页
一种改进的DDAGSVM决策算法
  • ISSN号:1009-3516
  • 期刊名称:《空军工程大学学报:自然科学版》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]空军工程大学防空反导学院,西安710051
  • 相关基金:国家自然科学基金资助项目(61273275)
中文摘要:

决策导向无环图支持向量机(DDAGSVM)是一种典型的SVM多类分类算法,然而传统SVM决策分类器存在误差积累,其推广能力有待进一步提高。为改进DDAGSVM,有效的做法是定义一种类间可分离性测度,将容易分的类先分割出来,然后再分不容易分的类,使错分尽可能地远离图的根部。引入了一种基于广义KKT条件的类间可分离性测度,提出一种改进的DDAGSVM分类决策算法。三螺旋线实验和HRRP分类实验证明该方法对控制分类错误有明显的效果。

英文摘要:

A decision directed acyclic graph support vector machine is a typical multi-class classification with support vector machines. But error accumulation exists in the traditional decision classification, and its generalization ability depends on the tree structure. In this paper, to improve the generalization ability of DDAGSVM, a novel separable measure is defined based on the generalized KKT, and an improved decision directed acyclic graph support vector machine is given. The three-spiral and HRRP experimental results show that this kind of algorithm has an obvious effectiveness in controlling classification errors.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《空军工程大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:空军工程大学
  • 主办单位:空军工程大学科研部
  • 主编:于雷
  • 地址:西安市空军工程大学
  • 邮编:710051
  • 邮箱:kgdbjb@163.com
  • 电话:029-8476434
  • 国际标准刊号:ISSN:1009-3516
  • 国内统一刊号:ISSN:61-1338/N
  • 邮发代号:52-247
  • 获奖情况:
  • 中国期刊方阵"双效"期刊,陕西省优秀科技期刊,2004年中国高校优秀科技期刊二等奖,2006年中国高校优秀科技期刊奖,2008年中国高校优秀科技期刊奖,2009年中国高校科技期刊编辑质量优秀奖,2010年中国高校优秀科技期刊奖,2004年综合性科学技术类核心期刊,2008年综合性科学技术类核心期刊,2009年、2011年RCCSE中国核心学术期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:5808