对满足条件n≥i≥0的整数n和i,设(ni)=n!/i!(n-i)!为二项式系数;对于任意的非负整数l,令F_l是第l个Fibonacci数,对于给定的非负整数k和正整数n,设f(k,m,n)是数列{(ni)}ni=0和{Fmk+i}ni=0的卷积,即f(k,m,n)=(n0)Fmk+(n1)Fmk+1+…+(nn)Fmk+n.运用初等数论方法证明等式f(k,4,n)=1/25(3~nL_(4k+2n)-(-1)~(k+n)4L_(2k+n)+3·2~(n+1))及f(k,8,n)=1/625(7~n·L_(8k+4n)-8·4~n(-1)~(k+n)L_(6k+3n)+28·3~nL_(4k+2n)-56·(-1)~(k+n)L_(2k+n)+35·2~(n+1)).
For any integers n and i with n ≥ i ≥ 0,let (n i)=n !/i ! (n -i )! be a binomial coeffi-cient.For any nonnegative integer l ,let F l be the l-th Fibonacci number.Further,for any fixed nonnegative integer k and any fixed positive integer n ,let f (k ,m ,n )denote the convolu-tion of the sequence {(n i)}n i =0 and {F mk+i }ni =0 ,namely,f (k ,m ,n )=(n 0)F mk +…+(n n)F mk+n .By using the elementary number theory methods, two identities f (k ,4,n )= 1/25(3nL4k+2n-(-1)k+n4L2k+n+3·2n+1)and f(k,8,n)=1/625(7n ·L 8k+4n- 8·4n (- 1)k+nL 6k+3n + 28·3nL 4k+2n - 56·(- 1)k+nL 2k+n + 35·2n+1 ).